FORMULAS FOR CALCULATION

$$
\begin{array}{ll}
\mathbf{v}_{(\mathrm{th})}=\sqrt{2 \mathrm{gH}} & \mathrm{H}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}} \\
\mathrm{E}=\mathbf{m g H} & \mathrm{e}=\frac{\mathbf{m V}^{2}}{2} \\
\mathrm{v}=\frac{\mathrm{d}}{\mathrm{t}} &
\end{array}
$$

$\mathbf{F}=\mathbf{m a}$

System friction (\%) $=\frac{\mathbf{V}_{(t h)}-\mathbf{V}_{(\mathrm{pr})}}{\mathbf{V}_{(\mathrm{th})}}$

RESPECTIVELY WHERE:

$a=$ acceleration $\left(\mathrm{m} / \mathrm{sec}^{2}\right)$	$H=$ drop height (m)
$\mathrm{e}=$ energy (joules)	$V_{(\mathrm{pr})}=$ practical velocity $(\mathrm{m} / \mathrm{sec})$
$\mathrm{m}=$ mass (kg)	$V_{(\mathrm{th})}=$ theoretical velocity $(\mathrm{m} / \mathrm{sec})$
$F=$ force $($ Newton $)$	$d=$ distance (mm)
$g=9.8068 \mathrm{~m} / \mathrm{sec}^{2}$	$\mathrm{t}=$ time (millisecond)

