

FORMULAS FOR CALCULATION

$\mathbf{v}_{(th)} =$	$\sqrt{2gH}$
-----------------------	--------------

E = mgH $v = \frac{d}{t}$ $e = \frac{mV^2}{2}$

 $\mathbf{F} = \mathbf{ma}$

System friction (%) = $\frac{\mathbf{v}_{(th)} - \mathbf{v}_{(pr)}}{\mathbf{v}_{(th)}}$

RESPECTIVELY WHERE:

- $a = acceleration (m/sec^2)$
- e = energy (joules)
- m = mass (kg)
- F =force (Newton)
- g = 9.8068 m/sec²
- (universal gravity constant)
- $$\begin{split} H &= drop \ height \ (m) \\ V_{(pr)} &= practical \ velocity \ (m/sec) \\ V_{(th)} &= theoretical \ velocity \ (m/sec) \\ d &= distance \ (mm) \\ t &= time \ (millisecond) \end{split}$$

 $H = \frac{V^2}{2g}$